skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thuening, Theodore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is much more challenging. Herein, we demonstrate that the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral ‘29’ copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals which expose a continuous distribution of surface orientations as a function of position on the crystal, enabled us to systematically investigate the mechanism of chirality transfer between metal and oxide with high-resolution scanning tunneling microscopy. We discovered that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the ‘29’ oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We used this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a ‘29’ oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by very slight misorientation of a metal surface (~1 sites/ 20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (~75 sites/ 20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately miscut metal surface. 
    more » « less